在平面直角坐标系xOy中,设曲线C1:所围成的封闭图形的面积为,曲线C1上的点到原点O的最短距离为.以曲线C1与坐标轴的交点为顶点的椭圆记为C2.(1)求椭圆C2的标准方程;(2)设AB是过椭圆C2中心O的任意弦,l是线段AB的垂直平分线.M是l上的点(与O不重合).①若MO=2OA,当点A在椭圆C2上运动时,求点M的轨迹方程;②若M是l与椭圆C2的交点,求△AMB的面积的最小值.
已知函数. (1)若是函数的极值点,求的值; (2)求函数的单调区间.
设函数,,函数的图象与轴的交点也在函数的图象上,且在此点有公切线. (Ⅰ)求,的值; (Ⅱ)试比较与的大小.
已知向量,,且,其中A、B、C是ABC的内角,分别是角A,B,C的对边。 (Ⅰ)求角C的大小; (Ⅱ)求的取值范围;
已知幂函数为偶函数,且在区间上是单调增函数 (1)求函数的解析式; (2)设函数,其中.若函数仅在处有极值,求的取值范围.
记关于的不等式的解集为,不等式的解集为. (1)若,求; (2)若,求正数的取值.