如图,在四棱锥中,平面,,,是的中点,是上的点且,为△中边上的高.(1)证明:平面;(2)若,,,求三棱锥的体积;
(本小题满分7分)选修4-2:矩阵与变换已知矩阵的逆矩阵为.(Ⅰ)求矩阵;(Ⅱ)矩阵A的特征值及对应的特征向量.
(本小题满分14分)已知函数. (Ⅰ)若,且,求 的取值范围; (Ⅱ)如果函数在上单调递增,求的取值范围; (Ⅲ)求证:.
(本小题满分13分)如图,圆的方程为,是圆内一个定点,且中点为原点 ,是圆上任意一点,线段的垂直平分线与半径相交于点. (Ⅰ)当点在圆上运动时,求证:点的轨迹为椭圆,并求轨迹的方程; (Ⅱ)在(Ⅰ)的条件下,过点的直线l交椭圆于A,B两点,交直线于点E,求证:为定值.
(本小题满分13分)某电视台的冲关电视节,要求参赛者从道选题中一次性随机抽取道题,至少独立的正确回答道题,方可进入下一关.已知道备选题中参赛者小福有道题能正确回答,道题不能正确回答;参赛者小州每题正确回答的概率都是,且每题正确回答与否互不影响.(Ⅰ)分别求小福、小州两人正确回答试题数的分布列,并计算其数学期望;(Ⅱ)请分析比较小福、小州两人谁进入下一关的可能性大.
(本小题满分13分)如图,在四棱锥PABCD中,侧面PAD⊥底面ABCD,侧棱, ,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,O为AD中点. (Ⅰ)求证:平面; (Ⅱ)求直线与平面所成角的大小;