(1)计算+(2)已知,求
(本小题满分12分)直三棱柱中,,E,F分别是的中点,为棱上的点. (Ⅰ)证明:; (Ⅱ)已知存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为,请说明点D的位置.
(本小题满分12分)在中,边a,b,c的对角分别为A,B,C;且,面积. (Ⅰ)求a的值; (Ⅱ)设,将图象上所有点的横坐标变为原来的(纵坐标不变)得到的图象,求的单调增区间.
设函数(其中). (Ⅰ)求函数的极值; (Ⅱ)求函数在上的最小值; (Ⅲ)若,判断函数零点个数.
已知数列的前项和为,. (Ⅰ)求数列的通项公式; (Ⅱ)设数列的前项和为,,点在直线上,若存在,使不等式成立,求实数的最大值.
当且时,判断与的大小,并给出证明.