(本小题满分12分)一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取个作为样本,称出它们的重量(单位:克),重量分组区间为,,,,由此得到样本的重量频率分布直方图(如图),(Ⅰ)求的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(Ⅱ)从盒子中随机抽取个小球,其中重量在内的小球个数为,求的分布列和数学期望. (以直方图中的频率作为概率).
(本小题满分12分)已知集合,.(1)在区间上任取一个实数,求“”的概率;(2)设为有序实数对,其中是从集合中任取的一个整数,是从集合中任取的一个整数,求“”的概率.
(本小题满分12分)在中,内角所对边长分别为,,,.(1)求的最大值及的取值范围;(2)求函数的最值.
(本小题满分14分)现有甲,乙,丙,丁四名篮球运动员进行传球训练,由甲开始传球(即第一次传球是由甲传向乙或丙或丁),记第次传球球传回到甲的不同传球方式种数为.(1)试写出,并找出与()的关系式;(2)求数列的通项公式;(3)证明:当时, .
(本小题满分13分)(1)若(),试求实数的范围;(2)设实数,函数,试求函数的值域。
(本小题满分12分)已知不等式组所表示的平面区域为D,记D内的整点个数为(整点即横坐标和纵坐标均为整数的点).(1)数列的通项公式;(2)若,记,求证:.