某联欢会上有一个有奖游戏,规则如下:有5张纸牌,背面都是喜羊羊头像,正面有2张是笑脸,其余3张是哭脸.现将5张纸牌洗匀后背面朝上摆放到桌上.(1)小芳获得一次翻牌机会,她从中随机翻开一张纸牌.若翻到的纸牌是笑脸就有奖,小芳得奖的概率是多少?(2)小明获得两次翻牌机会,他同时翻开两张纸牌.若翻到的纸牌中有笑脸就有奖,没有笑脸就没有奖.小明认为这样得奖的概率是(1)中小芳得奖概率的两倍,你赞同他的观点吗?请用树形图或列表法进行分析说明.
计算: | - 7 | - ( 1 - π ) 0 + 1 3 - 1 .
如图,抛物线 经过点 , ,交 轴于点 ;
(1)求抛物线的解析式(用一般式表示);
(2)点 为 轴右侧抛物线上一点,是否存在点 使 S Δ ABC = 2 3 S Δ ABD ?若存在请直接给出点 坐标;若不存在请说明理由;
(3)将直线 绕点 顺时针旋转 ,与抛物线交于另一点 ,求 的长.
如图,线段 是 的直径,弦 于点 ,点 是 上任意一点, , .
(1)求 的半径 的长度;
(2)求 ;
(3)直线 交直线 于点 ,直线 交 于点 ,连接 交 于点 ,求 的值.
如图,一次函数 与反比例函数 y = m x ( x > 0 ) 交于 , ,与 轴, 轴分别交于点 , .
(1)直接写出一次函数 的表达式和反比例函数 y = m x ( x > 0 ) 的表达式;
(2)求证: .
一个矩形周长为56厘米.
(1)当矩形面积为180平方厘米时,长宽分别为多少?
(2)能围成面积为200平方厘米的矩形吗?请说明理由.