某联欢会上有一个有奖游戏,规则如下:有5张纸牌,背面都是喜羊羊头像,正面有2张是笑脸,其余3张是哭脸.现将5张纸牌洗匀后背面朝上摆放到桌上.(1)小芳获得一次翻牌机会,她从中随机翻开一张纸牌.若翻到的纸牌是笑脸就有奖,小芳得奖的概率是多少?(2)小明获得两次翻牌机会,他同时翻开两张纸牌.若翻到的纸牌中有笑脸就有奖,没有笑脸就没有奖.小明认为这样得奖的概率是(1)中小芳得奖概率的两倍,你赞同他的观点吗?请用树形图或列表法进行分析说明.
如图,在边长为1的正方形网格中,有一格点△ABC,已知A、B、C三点的坐标分别是A(1,0)、B(2,-1)、C(3,1). (1)请在网格图形中画出平面直角坐标系; (2)以原点O为位似中心,将△ABC放大2倍,画出放大后的△A′B′C′; (3)写出△A′B′C′各顶点的坐标:A′____,B′____,C′ ___;
如图,已知L1⊥L2,⊙O与L1,L2都相切,⊙O的半径为1cm,矩形ABCD的边AD、AB分别与直线L1,L2重合,∠BCA=600,若⊙O与矩形ABCD沿L1同时向右移动,⊙O的移动速度为2cm/s,矩形ABCD的移动速度为3cm/s,设移动时间为t(s) (1)如图①,连接OA、AC,则∠OAC的度数为 °; (2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长); (3)在移动过程中,求当对角线AC所在直线与圆O第二次相切 时t的值。
如图,已知△ABC的一个外角∠CAM=120°,AD是∠CAM的平分线,且AD的反向延长线与△ABC的外接圆交于点F,连接FB、FC,且FC与AB交于E, (1)判断△FBC的形状,并说明理由; (2)请探索线段AB、AC与AF之间满足条件的关系式并说明理由.
)已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD. (1)求证:∠DAC=∠DBA; (2)求证:P是线段AF的中点; (3)连接CD,若CD﹦3,BD﹦4,求⊙O的半径和DE的长.
如图,AB=BC,以AB为直径的⊙O交AC于点D,过点D作DE⊥BC,垂足为E。 (1)求证:DE是⊙O的切线; (2)作DG⊥AB交⊙O于G点,垂足为F点,若∠A=30°,AB=8,求DG的长。