已知函数()在处有极小值.(Ⅰ)求的值;(Ⅱ)求在区间上的最大值和最小值.
如图,动点M与两定点A(-1,0),B(2,0)构成△MAB,且∠MBA=2∠MAB.设动点M的轨迹为C. (1)求轨迹C的方程; (2)设直线(其中)与y轴相交于点P,与轨迹C相交于点Q,R,且,求的取值范围.
在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:
(1)设X表示在这块地上种植1季此作物的利润,求X的分布列; (2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.
如图,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连结GH. (1)求证:AB∥GH; (2)求平面PAB与平面PCD所成角的正弦值.
已知数列的前项和为,,,,其中为常数. (1)证明:; (2)当为何值时,数列为等差数列?并说明理由.
已知函数. (1)若,且,求的值; (2)当取得最小值时,求自变量的集合.