(本小题满分12分)已知,(1)当=2时,求曲线在处的切线方程;(2)若0,讨论函数的单调性.
(本小题满分12分)已知函数,数列满足.(Ⅰ)求数列的通项公式;(Ⅱ)求;(Ⅲ)求证:
(本小题满分12分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/小时)与汽车的平均速度v(千米/小时)之间的函数关系为.(Ⅰ)在该时段内,当汽车的平均速度v为多少时,车流量最大?最大车流量为多少?(Ⅱ)若要求在该时段内车流量超过9千辆/小时,则汽车的平均速度应在什么范围内?
(本小题满分12分)如图,已知四棱柱ABCD—A1B1C1D1中,A1D⊥底面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2。 (I)求证:C1D//平面ABB1A1; (II)求直线BD1与平面A1C1D所成角的正弦值; (Ⅲ)求二面角D—A1C1—A的余弦值。
(本小题满分12分)已知集合,集合.(Ⅰ)若,求;(Ⅱ)若AB,求实数的取值范围.
已知函数f(x)=+其中a为实数(1) 求函数的最大值个(2) 若对于任意的非零实数a,不等式恒成立,求实数的取值范围。