(本小题满分12分)(文)已知函数f(x)=x(x+a)-lnx,其中a为常数.(1)当a=-1时,求f(x)的极值;(2)若f(x)是区间内的单调函数,求实数a的取值范围;(3)过坐标原点可以作几条直线与曲线y=f(x)相切?请说明理由.
(本小题8分)设函数f(x)=x2-2x+2 ,x∈[t,t+1],t∈R,求函数f(x)的最小值g(t)的表达式.
(本小题8分)已知集合A={x|1-a<x<1+a},B={x|-1<x<7},若A∩B=A,求a的取值范围.
(本小题12分)已知,(1)判断的奇偶性并用定义证明;(2)当时,总有成立,求的取值范围.
(本小题8分)设函数是定义域在的函数,且,对于任意的实数,都有,当>0时,.(1)求的值;(2)判断函数在的单调性并用定义证明;(3)若,解不等式.