如图,已知:AD∥BC,AD=CB,AE=CF,(1)请问∠B=∠D吗?为什么?(2)不改变其他条件,提出一个你认为正确的结论,并说明理由?
(本题6分)如图,已知E、F是□ABCD对角线AC上的两点,且BE⊥AC,DF⊥AC. (1)求证:△ABE≌△CDF; (2)请写出图中除△ABE≌△CDF外其余两对全等三角形(不再添加辅助线).
(本题6分)(1)计算: (2)化简:
(本题14分)在同一平面直角坐标系中有6个点,,. (1)画出的外接圆⊙P,并指出点与⊙P的位置关系; (2)若将直线沿轴向上平移,当它经过点时,设此时的直线为. ①判断直线与⊙P的位置关系,并说明理由; ②再将直线绕点按顺时针方向旋转,当它经过点时,设此时的直线为.求直线与⊙P的劣弧围成的图形的面积S(结果保留).
(本题12分)某学校规定,该学校教师的每人每月用电量不超过A度,那么这个月只需交10元电费,如果超过A度,则这个月除了仍要交10元用电费外,超过部分还要按每度元交费. ⑴胡教师12月份用电90度,超过了规定的A度,则超过的部分应交电费多少元?(用含A的代数式表示) ⑵下面是该教师10月、11月的用电情况和交费情况:
根据上表数据,求A值,并计算该教师12月份应交电费多少元?
(本题10分)将一块三角板的直角顶点放在正方形ABCD的对角线交点位置,两边与对角线重合如图甲,将这块三角板绕直角顶点顺时针方向旋转(旋转角小于90°)如图乙. ⑴试判断图乙中△ODE和△OCF是否全等,并证明你的结论. ⑵若正方形ABCD的对角线长为10,试求三角板和正方形重合部分的面积.