(本小题共13分)将这个数随机排成一列,得到的一列数称为的一个排列.定义为排列的波动强度.(Ⅰ)当时,写出排列的所有可能情况及所对应的波动强度;(Ⅱ)当时,求的最大值,并指出所对应的一个排列.(Ⅲ)当时,在一个排列中交换相邻两数的位置称为一次调整,若要求每次调整时波动强度不增加,问对任意排列,是否一定可以经过有限次调整使其波动强度降为9;若可以,给出调整方案,若不可以,请给出一个反例并加以说明.
已知向量 与 共线,设函数 。 (1)求函数 的周期及最大值; (2)已知锐角 △ABC 中的三个内角分别为 A、B、C,若有 ,边 BC=,,求 △ABC 的面积.
(本小题满分14分) 已知椭圆的中心在原点,一个焦点,且长轴长与短轴长的比是.若椭圆在第一象限的一点的横坐标为,过点作倾斜角互补的两条不同的直线,分别交椭圆于另外两点,. (Ⅰ)求椭圆的方程; (Ⅱ)求证:直线的斜率为定值; (Ⅲ)求面积的最大值.
(本小题满分14分) 已知四棱锥的底面为菱形,且,,与相交于点. (Ⅰ)求证:底面; (Ⅱ)求直线与平面所成角的正弦值; (Ⅲ)若是上的一点,且,求的值.
(本小题满分13分) 对某校高三年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下: (Ⅰ)求出表中及图中的值; (Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间内的人数; (Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率.
(本小题满分13分)在直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为,直线与C交于A,B两点.(1)写出C的方程;(2)若,求k的值.