(本小题共14分)如图,四棱锥的底面是直角梯形,,,和是两个边长为的正三角形,,为的中点,为的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面;(Ⅲ)求直线与平面所成角的正弦值.
已知数列的前项和为,.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.
已知二次函数h(x)=ax2+bx+c(其中c<3),其导函数的图象如图,f(x)=6lnx+h(x)(1)求f(x)在x=3处的切线斜率;(2)若f(x)在区间(m,m+)上是单调函数,求实数m的取值范围;(3)若对任意k∈[-1,1],函数y=kx(x∈(0,6])的图象总在函数y=f(x)图象的上方,求c的取值范围
设函数 (1)当时,求的单调区间;(2)若当时恒成立,求实数的取值范围。
如图所示,某饲养场要建造一间两面靠墙的三角形露天养殖场,已知已有两面墙的夹角为60°(即),现有可供建造第三面围墙的材料60米(两面墙的长均大于60米),为了使得小老虎能健康成长,要求所建造的三角形露天活动室尽可能大,记,(1)问当为多少时,所建造的三角形露天活动室的面积最大?(2)若饲养场建造成扇形,养殖场的面积能比(1)中的最大面积更大?说明理由。
由于当前学生课业负担较重,造成青少年视力普遍下降,现从某中学随机抽取16名学生,经校医用对数视力表检査得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:(I )若视力测试结果不低于5 0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;(II)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记表示抽到“好视力”学生的人数,求的分布列及数学期望,据此估计该校高中学生(共有5600人)好视力的人数