(本小题满分13分)已知集合,其中,表示和中所有不同值的个数.(Ⅰ)设集合,,分别求和;(Ⅱ)若集合,求证:; (Ⅲ)是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由?
已知函数,当时,函数取得极值. (Ⅰ)求实数的值; (Ⅱ)若对任意,都有恒成立,求实数的取值范围.
命题:对任意实数,都有恒成立,命题:方程有实根,若为假,为真,求实数m的取值范围.
已知抛物线,过它的焦点作倾斜角为的直线交抛物线于、两点,求弦的长.
已知椭圆的标准方程为,过点的双曲线的实轴的两端点恰好是椭圆的两焦点,求双曲线的标准方程.
((本小题满分14分) 已知函数. (I)当时,求函数的单调区间; (II)若函数在区间上无极值,求的取值范围; (III)已知且,求证:.