(本大题满分12分)的三内角的对边分别为,已知:成等比数列 (1) 求角的取值范围; (2)是否存在实数,使得不等式对任意的实数及满足已知条件的所有角都成立?若存在,求出的取值范围;若不存在,说明理由.
(本小题满分10分)选修4—5:不等式选讲已知函数(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.
(本小题满分10分)选修4—1:几何证明选讲如图,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(Ⅰ)求证:AB为圆的直径;(Ⅱ)若AC=BD,求证:AB=ED.
(本小题满分12分)设,曲线在点处的切线与直线垂直.(1)求的值;(2)若恒成立,求的取值范围;(3)求证:.
(本小题满分12分)设椭圆C:的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60o, .(Ⅰ)求椭圆C的离心率;(Ⅱ)如果|AB|=,求椭圆C的方程.