已知等差数列的公差为,且,,成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)设数列的前学科王项和为,求证:.
已知函数(1)求的值;(2)当时,求函数的值域.
已知函数,其中且.(1)讨论的单调性;(2) 若不等式恒成立,求实数取值范围;(3)若方程存在两个异号实根,,求证:
已知正项数列中,其前项和为,且.(1)求数列的通项公式;(2)设是数列的前项和,是数列的前项和,求证:.
已知点,的坐标分别为,.直线,相交于点,且它们的斜率之积是,记动点的轨迹为曲线. (1)求曲线的方程;(2)设是曲线上的动点,直线,分别交直线于点,线段的中点为,求直线与直线的斜率之积的取值范围;(3)在(2)的条件下,记直线与的交点为,试探究点与曲线的位置关系,并说明理由.
如图,正方形与梯形所在的平面互相垂直,,∥,,,为的中点.(1)求证:∥平面;(2)求证:平面平面;(3)求平面与平面所成锐二面角的余弦值.