已知中,角,,所对的边分别为,,,若,.(1)判断的形状;(2)在的边,上分别取,两点,使沿线段折叠三角形时,顶点正好落在边上的点处,设,当最小时,求的值.
(本小题满分12分) 为了研究某高校大学新生学生的视力情况,随机地抽查了该校100名进校学生的视力情况,得到频率分布直方图,如图.已知前4组的频数从左到右依次是等比数列的前四项,后6组的频数从左到右依次是等差数列的前六项. (I)求等比数列的通项公式; (II)求等差数列的通项公式; (III)若规定视力低于5.0的学生属于近视学生,试估计该校新生的近视率的大小.
(本小题满分12分) 已知函数(Ⅰ)求证:对于的定义域内的任意两个实数,都有;(Ⅱ)判断的奇偶性,并予以证明.
(本小题满分12分) 已知集合A={x|x2-3x+2=0},B={x|x2-mx+2=0},且AB=B,求实数m的取值范围。
(本小题满分10分) 已知直线l经过点P(1,1),倾斜角. (Ⅰ)写出直线l的参数方程 (Ⅱ)设l与圆x2+y2=4相交与两点A、B,求点P到A、B两点的距离之积.
(本小题满分10分) 已知函数. (Ⅰ)解不等式≤4; (Ⅱ)若存在x使得≤0成立,求实数a的取值范围.