如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.(1)分别求出线段AP、CB的长;(2)如果OE=5,求证:DE是⊙O的切线;(3)如果tan∠E=,求DE的长.
如图,在网格图中建立平面直角坐标系,的顶点坐标为、、.(1)若将向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的;(2)画出绕C1顺时针方向旋转900后得到的;(3)与是中心对称图形,请写出对称中心的坐标: ;并计算的面积: .(4)在坐标轴上是否存在P点,使得△PAB与△CAB的面积相等,若有,则求出点P的坐标.
先化简,再求值:,其中x=2-.
如图,已知二次函数的图象过点.(1)求二次函数的解析式;(2)求证:是直角三角形;(3)若点在第二象限,且是抛物线上的一动点,过点作垂直轴于点,试探究是否存在以、、为顶点的三角形与相似?若存在,求出点的坐标.若不存在,请说明理由.
如本题图1,在中,、、分别为三边的中点,点在边上,与四边形的周长相等,设、、.(1)求线段的长(用含、、的代数式表示);(2)求证:平分;(3)连接,如本题图2,若与相似,求证:.
如图,是的弦,为半径的中点,过作交弦于点,交 于点,且.(1)求证:是的切线;(2)连接、,求的度数;