已知抛物线y=+bx+c与直线BC相交于B、C两点,且B(6,0)、C(0,3). (1)填空:b= ,c= ; (2)长度为的线段DE在线段CB上移动,点G与点F在上述抛物线上,且线段EF与DG始终平行于y轴. ①连结FG,求四边形DGFE的面积的最大值,并求出此时点D的坐标; ②在线段DE移动的过程中,是否存在DE=GF?若存在,请直接写出此时点D的坐标;若不存在,试说明理由.
解方程:
计算+-丨-5丨
某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所彖的竖式与横式两种长方体形状的无盖纸盒.现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共l00个,设做竖式纸盒x个.①根据题意,完成以下表格:
②按两种纸盒的生产个数来分,有哪几种生产方案?(2)若有正方形纸板162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.则n的值是 .(写出一个即可)
如图,在以O为原点的直角坐标系中,点A、C分别在x轴、y轴的正半轴上,点B(a,b)在第一象限,四边形OABC是矩形,若反比例函数(k>0,x>0)的图象与AB相交于点D,与BC相交于点E,且BE=CE.(1)求证:BD=AD;(2)若四边形ODBE的面积是9,求k的值.
用你发现的规律解答下列问题. ┅┅①计算 .②探究 .(用含有的式子表示)③若的值为,求的值.