如图,在平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的. (1)请写出旋转中心的坐标是 ,旋转角是 度; (2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形; (3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.
已知:如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,交AC于点D,经过B、D两点的⊙O交AB 于点E,交BC于点F, EB为⊙O的直径. (1)求证:AC是⊙O的切线; (2)当BC=2,cos∠ABC=时,求⊙O的半径.
如图,在修建某条地铁时,科技人员利用探测仪在地面A、B两个探测点探测到地下C处有金属回声.已知A、B两点相距8米,探测线AC,BC与地面的夹角分别是30°和45°,试确定有金属回声的点C的深度是多少米?
已知抛物线. (1)求证:此抛物线与x轴必有两个不同的交点; (2)若此抛物线与直线的一个交点在y轴上,求m的值.
如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,DC=, AC=3. (1)求∠B的度数; (2)求AB及BC的长.
如图,在△ABC和△CDE中,∠B =∠D=90°,C为线段BD上一点,且AC⊥CE.AB=3,DE=2,BC=6.求CD的长.