某研究性学习小组,为了测量某池塘边A、B两点间的距离,让一架航模在直线AB的正上方24米的高度飞行,当航模位于点D处时,在A点处测得航模仰角为60°,5分钟后,当航模在点C处时,在B点测得航模仰角为45°,己知航模飞行的速度为每分钟45米,试计算A、B两点的距离.(结果精确到0.1米,参考数据:=1.41,=1.73.)
已知:如图,在梯形ABCD中,AD // BC,E、F分别为边AB、DC的中点,CG // DE,交EF的延长线于点G. (1)求证:四边形DECG是平行四边形; (2)当ED平分∠ADC时,求证:四边形DECG是矩形.
甲、乙两家便利店到批发站采购了一批饮料,共25箱,由于两店所处的地理位置不同,因此甲店的销售价格比乙店的销售价格每箱多10元.两店将所进饮料全部售完后,甲店的营业额为1000元,比乙店少350元,求甲乙两店各购进了多少箱饮料?
已知:如图,AB为⊙O的弦,OD⊥AB,垂足为点D,DO的延长线交⊙O于点C.过点C作CE⊥AO,分别与AB、AO的延长线相交于E、F两点.CD = 8,. 求:(1)弦AB的长; (2)△CDE的面积.
解不等式组:并将解集在数轴上表示出来.
如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21.动点P从点D出发,沿线段DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点P运动到点A时,点Q随之停止运动.设运动的时间为t(秒). (1)当t=2时,求△BPQ的面积; (2)若四边形ABQP为平行四边形,求运动时间t. (3)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?