(本小题满分14分)围建一个面积为的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修,可供利用的旧墙足够长),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽的进出口,如图2所示.已知旧墙的维修费用为,新墙的造价为.设利用旧墙的长度为(单位:),修建此矩形场地围墙的总费用为(单位:元).(1)将表示为的函数,并写出此函数的定义域;(2)若要求用于维修旧墙的费用不得超过修建此矩形场地围墙的总费用的15%,试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
(本小题满分10分)已知
本小题满分10分)已知椭圆的参数方程(为参数),求椭圆上的动点P到直线(t为参数)的最短距离。
(本小题满分10分)如图,在⊙O中,弦CD垂直于直径AB,求证:
(本小题满分12分)已知在定义域上为减函数,且其导函数存在零点。(I)求实数a的值;(II)函数的图象与函数的图象关于直线y=x对称,且为函数的导函数,是函数图像上两点,若,判断的大小,并证明你的结论。[
(本小题满分12分)已知F1、F2分别是椭圆的左、右焦点,曲线C是坐标原点为顶点,以F2为焦点的抛物线,过点F1的直线交曲线C于x轴上方两个不同点P、Q,点P关于x轴的对称点为M,设(I)求,求直线的斜率k的取值范围;(II)求证:直线MQ过定点。