(本小题满分14分)围建一个面积为的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修,可供利用的旧墙足够长),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽的进出口,如图2所示.已知旧墙的维修费用为,新墙的造价为.设利用旧墙的长度为(单位:),修建此矩形场地围墙的总费用为(单位:元).(1)将表示为的函数,并写出此函数的定义域;(2)若要求用于维修旧墙的费用不得超过修建此矩形场地围墙的总费用的15%,试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
已知函数.(Ⅰ)求的最大值,并求出此时的值;(Ⅱ)写出的单调区间.
如图,以为始边作角与(,它们的终边分别与单位圆相交于点、,已知点的坐标为.(Ⅰ)求的值;(Ⅱ)若,求.
设函数,且为的极值点.(Ⅰ) 若为的极大值点,求的单调区间(用表示);(Ⅱ)若恰有两解,求实数的取值范围.
设,先分别求,,,然后归纳猜想一般性结论,并给出证明.
已知函数.(1)若在处取得极值为,求的值;(2)若在上是增函数,求实数 的取值范围.