设,先分别求,,,然后归纳猜想一般性结论,并给出证明.
椭圆的离心率为,长轴端点与短轴端点间的距离为. (Ⅰ)求椭圆的方程; (Ⅱ)过点的直线与椭圆交于两点,为坐标原点,若为直角三角形,求直线的斜率.
.已知⊙C的参数方程为,(为参数),是⊙C与轴正半轴的交点,以圆心C为极点,轴正半轴为极轴建立极坐标系. (Ⅰ)求⊙C的普通方程. (Ⅱ)求过点P的⊙C的切线的极坐标方程.
在直三棱柱中,,,且异面直线与所成的角等于,设. (1)求的值; (2)求平面与平面所成的锐二面角的大小
如图,在圆上任取一点P,过点P作轴的垂线PD,D为垂足,当点P在圆上运动时,求线段PD的中点的轨迹方程.
如图,正方形与等腰直角△ACB所在的平面互相垂直,且AC=BC=2,, F、G分别是线段AE、BC的中点.求与所成的角的余弦值.