在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α转得到线段PQ.(1)若α=60°且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D.求∠CDB的度数;(2)在图2中,点P不与点B,M重合,线段CQ的延长线于射线BM交于点D,求∠CDB的大小(用含α的代数式表示);(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请求α的取值范围.
如图,正方形ABCD中,E、F分别是AB、BC边上的点,且AE=BF,求证:AF⊥DE。
用适当的方法解下列方程(1) (2)
如图,在平面直角坐标系中,点A、B的坐标分别为(-5,0)和(5,0),以AB为直径在x轴的上方作半圆O,点C是该半圆上第一象限内的一个动点,连结AC、BC,并延长BC至点D,使BC=CD,过点D作x轴的垂线,分别交x轴、线段AC于点E、F,E为垂足,连结OF.(1)当∠CAB=30°时,求弧BC的长;(2)当AE=6时,求弦BC的长;(3)在点C运动的过程中,是否存在以点O、E、F为顶点的三角形与△DEB相似?若存在,请求出此时E点的坐标;若不存在,请说明理由.
如图,在⊙O的内接△ABC中,AD⊥BC于D,(1)①若作直径AP,求证:AB·AC=AD·AP;②已知AB+AC=12,AD=3,设⊙O的半径为y,AB的长为x.求y与x的函数关系式,及自变量x的取值范围;(2)图2中,点E为⊙O上一点,且,求证:CE+CD=BD.
三个小球分别标有﹣2,0,1三个数,这三个球除了标的数不同外,其余均相同,将小球放入一个不透明的布袋中搅匀.(1)从布袋中任意摸出一个小球,将小球上所标之数记下,然后将小球放回袋中,搅匀后再任意摸出一个小球,再记下小球上所标之数,求两次记下之数的和大于0的概率.(请用“画树状图”或“列表”等方法给出分析过程,并求出结果)(2)从布袋中任意摸出一个小球,将小球上所标之数记下,然后将小球放回袋中,搅匀后再任意摸出一个小球,将小球上所标之数再记下,…,这样一共摸了13次.若记下的13个数之和等于﹣4,平方和等于14.求:这13次摸球中,摸到球上所标之数是0的次数.