在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α转得到线段PQ.(1)若α=60°且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D.求∠CDB的度数;(2)在图2中,点P不与点B,M重合,线段CQ的延长线于射线BM交于点D,求∠CDB的大小(用含α的代数式表示);(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请求α的取值范围.
小明参加班长竞选,需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般”三选一投票.如图是7位评委对小明“演讲答辩”的评分统计图及全班50位同学民主测评票数统计图. (1)求评委给小明演讲答辩分数的众数,以及民主测评为“良好”票数的扇形圆心角度数; (2)求小明的综合得分是多少? (3)在竞选中,小亮的民主测评得分为82分,如果他的综合得分不小于小明的综合得分,他的演讲答辩得分至少要多少分?
如图,在直角坐标系xoy中,点A是反比例函数y1=的图象上一点,AB⊥x轴的正半轴于点B,C是OB的中点,一次函数y2=ax+b的图象经过A、C两点,并交y轴于点D(0,-2),若S△AO D=4. (1)求反比例函数和一次函数的表达式; (2)观察图象,请指出在y轴的右侧,当y1>y2时x的取值范围.
如图,在□ABCD中,E是对角线AC的中点,EF⊥AD于F,∠B=60°,AB=4,∠ACB=45°,求DF的长.
用配方法解方程:.
已知,求的值.