如图,在平面直角坐标系中,点A、B的坐标分别为(-5,0)和(5,0),以AB为直径在x轴的上方作半圆O,点C是该半圆上第一象限内的一个动点,连结AC、BC,并延长BC至点D,使BC=CD,过点D作x轴的垂线,分别交x轴、线段AC于点E、F,E为垂足,连结OF.(1)当∠CAB=30°时,求弧BC的长;(2)当AE=6时,求弦BC的长;(3)在点C运动的过程中,是否存在以点O、E、F为顶点的三角形与△DEB相似?若存在,请求出此时E点的坐标;若不存在,请说明理由.
(泸州)如图,海中一小岛上有一个观测点A,某天上午9:00观测到某渔船在观测点A的西南方向上的B处跟踪鱼群由南向北匀速航行.当天上午9:30观测到该渔船在观测点A的北偏西60°方向上的C处.若该渔船的速度为每小时30海里,在此航行过程中,问该渔船从B处开始航行多少小时,离观测点A的距离最近?(计算结果用根号表示,不取近似值).
(凉山州)计算:.
(凉山州)如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为45°.从距离楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C点,且仰角β为30°.已知树高EF=6米,求塔CD的高度.(结果保留根号)
(凉山州)如图,在正方形ABCD中,G是BC上任意一点,连接AG,DE⊥AG于E,BF∥DE交AG于F,探究线段AF、BF、EF三者之间的数量关系,并说明理由.
(凉山州)如图,⊙O的半径为5,点P在⊙O外,PB交⊙O于A、B两点,PC交⊙O于D、C两点.(1)求证:PA•PB=PD•PC;(2)若PA=,AB=,PD=DC+2,求点O到PC的距离.