先化简,再求值:,其中a=-1.
如图, BD , CE 分别是 △ ABC 的两边上的高,过 D 作 DG ⊥ BC 于点 G ,分别交 CE 及 BA 的延长线于点 F , H .求证:
(1) D G 2 = BG ⋅ CG ;
(2) BG ⋅ CG = GF ⋅ GH .
如图,在 △ ABC 中, BAC = 90 ∘ , AD ⊥ BC 于点 D ,点 E 为直角边 AC 的中点,过点 D , E 作直线交 AB 的延长线于点 F .求证: AB AC = DF AF .
如图,等边 △ ABC 中, D , E 分别在 BC , AC 上,且 BD = CE , AD , BE 交于点 F , EG / / CF 交于点 G ,求证: BF = DG .
如图,在凸四边形 ABCD 中,已知 ∠ ABC + ∠ CDA = 300 ∘ , AB ⋅ CD = BC ⋅ AD .求证: AB ⋅ CD = AC ⋅ BD .
如图所示,点 E 是正方形 ABCD 的边 BC 延长线上一点,连接 DE ,过顶点 B 作 BF ⊥ DE ,垂足为 F , BF 交边 DC 于点 G .
(1)求证: GD ⋅ AB = DF ⋅ BG ;
(2)连接 CF ,求证: ∠ CFB = 45 ∘ .