如图,抛物线y=-x2+bx+c的顶点为D,与x轴交于A(-1,0)、B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)若点P为线段BC上的一点(不与B、C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当四边形OBMC的面积最大时,求△BPN的周长;(3)在(2)的条件下,当四边形OBMC的面积最大时,在抛物线的对称轴上是否存在点Q,使得△CNQ为直角三角形?若存在,直接写出点Q的坐标.
在□ABCD中,对角线AC、BD交于点O,过点O作直线EF分别交线段AD、BC于点E、F.(1)根据题意,画出图形,并标上正确的字母;(2)求证:DE=BF.
如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.
如图,在□ABCD中,E、F是对角线BD上的两点,且BE=DF,连接AE、CF.请你猜想:AE与CF有怎样的数量关系,并对你的猜想加以证明.
如图,在平行四边形ABCD中,DE⊥AB于E,DF⊥BC于F,平行四边形ABCD的周长为48,DE=5,DF=10.(1)求AB的长度;(2)求平行四边形ABCD的面积.
如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E,F,求证:△AOE≌△COF.