在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.(1)如图1,把△AMN沿直线MN折叠得到△PMN,设AM=x.i.若点P正好在边BC上,求x的值;ii.在M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数关系式,并求y的最大值.(2)如图2,以MN为直径作⊙O,并在⊙O内作内接矩形AMQN.试判断直线BC与⊙O的位置关系,并说明理由.
如图,人民公园有一座人工假山。在社会实践活动中,数学老师要求同学们利用所学的知识测量假山的宽度AB.小红将假山前左侧找到的一颗树根部定为点C,又在假山前确定一点P,经目测PC //A8,并测量出∠CPA==45°,∠CPB=150°,PA=100米,请你帮小红计算出假山的宽度AB约为多少米.结果精确到O.1米:参考数据:=1.414,≈1.732,)
某校为了了解今年九年级400名学生体育加试成绩情况,体育老师从中随机抽取了40名学生,下图为体育老师没有绘制完成的这40名学生的体育加试成绩(满分为30分,成绩均为整数)的频数分布直方图,请结合图形解答下列问题:求被抽取的这40名学生中体育加试成绩在27.5~30.5这一小组的频数并补全频数分布直方图;若在所抽取的这40名学生中随机访问一名学生,被访问的学生成绩在25分以上(含25分)的概率是多少?如果成绩在25分以上(含25分)的同学属于优秀,请你估计全校九年级约有多少学生达到优秀水平。
先化筒,然后从介于-4和4之间的整数中,选取一个你认为合适的x的值代入求值.
如图,直角坐标系中,以点A(1,0)为圆心画圆,点M(4,4)在⊙A上,直线y=-x+b过点M,分别交x轴、y轴于B、C两点.求⊙A的半径和b的值;判断直线BC与⊙A的位置关系,并说明理由;若点P在⊙A上,点Q是y轴上C点下方的一点,当△PQM为等腰直角三角形时,请直接写出满足条件的点Q(0,k)(k为整数)坐标.
如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.求b+c的值若点C在抛物线上,且四边形OABC是平行四边形,试求抛物线的解析式;在(2)的条件下,作∠OBC的角平分线,与抛物线交于点P,求点P的坐标.