校文艺部在全校范围内随机抽取一部分同学,对同学们喜爱的四种“明星真人秀”节目进行问卷调查(每位同学只能选择一种最喜爱的节目),并将调查结果整理后分别绘制成如图所示的不完整的扇形统计图和条形统计图).请根据所给信息回答下列问题:(1)本次问卷调查共调查了多少名学生?(2)请将两幅统计图补充完整;(3)若该校有1500名学生,据此估计有多少名学生最喜爱《奔跑吧兄弟》节目.
有这样一道题:“计算的值,其中,” .甲同学把“”错抄成“”,但他计算的结果也是正确的,试说明理由,并求出这个结果?
如果方程的解与方程的解相同,求式子的值 .
如图,在平面直角坐标系中,O为坐标原点.A.B两点的坐标分别为A(m,0)、B(0,n),且,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P运动时间为t秒. (1)求m、n的值与OA、OB的长; (2)连接PB,若△POB的面积不大于3且不等于0,则t的取值范围是 (请直接写出答案). (3)过P作直线AB的垂线,垂足为D,直线PD与y轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.
如图,△ABC为等边三角形,D为射线BC上一点,∠ADE=60°,DE与∠ACB的外角平分线交于点E. (1)如图1,点D在BC上,求证:CA=CD+CE; (2)如图2,若D在BC的延长线上,直接写出CA、CD、CE之间的数量关系.
已知:如图A,△ABC各角的平分线AD,BE,CF交于点O. (1)试说明∠BOC=90°+∠BAC; (2)如图B,过点O作OG⊥BC于G,试判断∠BOD与∠COG的大小关系(大于,小于或等于),并说明理由.