如图,折叠矩形OABC的一边BC,使点C落在OA边的点D处,已知折痕BE=5,且,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:y=-+c经过点E,且与AB边相交于点F.(1)求证:△ABD∽△ODE;(2)若M是BE的中点,连接MF,求证:MF⊥BD;(3)P是线段BC上一点,点Q在抛物线l上,且始终满足PD⊥DQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由.
三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展平纸片,如图;再次折叠该三角形纸片,使得点A与点D重合,折痕为EF,再次展平后连接DE、DF,如图,证明:四边形AEDF是菱形.
如图,在Rt△ABC中,D、F分别是AB、AC的中点,延长BC到点E,使 求证:四边形DEBF是等腰梯形
如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形是平行四边形,并予以证明.(写出一种即可)关系:①∥,②,③,④. ] 已知:在四边形中, , ; 求证:四边形是平行四边形.
某中学开展“五比五创”演讲比赛活动,九(1)班准备根据根据平时练习成绩准备从张华、李明2名选手选出一名参加比赛,他们两人的五次平时成绩(满分20分)如下图所示。 (1)根据下图,分别求出张华、李明的平均成绩和方差; (2)根据(1)的计算结果,分析张华、李明同学各自的优点,并决定让那位同学参加比赛?
阅读下列解题过程: ;。 请回答下列问题: (1)观察上面的解题过程,请直接写出式子; (2)利用上面所提供的解法,请化简的值。