五边形ABCDE中,∠EAB=∠ABC=∠BCD=90°,AB=BC,且满足以点B为圆心,AB长为半径的圆弧AC与边DE相切于点F,连接BE,BD.(1)如图1,求∠EBD的度数;(2)如图2,连接AC,分别与BE,BD相交于点G,H,若AB=1,∠DBC=15°,求AG•HC的值.
如图, ∠ BAC = 90 ° , AD 是 ∠ BAC 内部一条射线,若 AB = AC , BE ⊥ AD 于点 E , CF ⊥ AD 于点 F .求证: AF = BE .
先化简,再求值: ( 2 x + 1 ) ( 2 x - 1 ) - ( 2 x - 3 ) 2 ,其中 x = - 1 .
如图,在平面直角坐标系 xOy 中,抛物线 y = - 1 4 x 2 + 3 2 x + 4 与两坐标轴分别相交于 A , B , C 三点.
(1)求证: ∠ ACB = 90 ° ;
(2)点 D 是第一象限内该抛物线上的动点,过点 D 作 x 轴的垂线交 BC 于点 E ,交 x 轴于点 F .
①求 DE + BF 的最大值;
②点 G 是 AC 的中点,若以点 C , D , E 为顶点的三角形与 ΔAOG 相似,求点 D 的坐标.
如图, ΔABC 是 ⊙ O 的内接三角形,过点 C 作 ⊙ O 的切线交 BA 的延长线于点 F , AE 是 ⊙ O 的直径,连接 EC .
(1)求证: ∠ ACF = ∠ B ;
(2)若 AB = BC , AD ⊥ BC 于点 D , FC = 4 , FA = 2 ,求 AD ⋅ AE 的值.
如图, A , B 是海面上位于东西方向的两个观测点,有一艘海轮在 C 点处遇险发出求救信号,此时测得 C 点位于观测点 A 的北偏东 45 ° 方向上,同时位于观测点 B 的北偏西 60 ° 方向上,且测得 C 点与观测点 A 的距离为 25 2 海里.
(1)求观测点 B 与 C 点之间的距离;
(2)有一艘救援船位于观测点 B 的正南方向且与观测点 B 相距30海里的 D 点处,在接到海轮的求救信号后立即前往营救,其航行速度为42海里 / 小时,求救援船到达 C 点需要的最少时间.