已知抛物线经过A(﹣1,0),B(3,0)两点,与y轴相交于点C,该抛物线的顶点为点D.(1)求该抛物线的解析式及点D的坐标;(2)连接AC,CD,BD,BC,设△AOC,△BOC,△BCD的面积分别为,和,用等式表示,、之间的数量关系,并说明理由;(3)点M是线段AB上一动点(不包括点A和点B),过点M作MN∥BC交AC于点N,连接MC,是否存在点M使∠AMN=∠ACM?若存在,求出点M的坐标和此时刻直线MN的解析式;若不存在,请说明理由.
如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C, D为OC的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC的面积之比为3∶2. (1)求这条抛物线对应的函数关系式; (2)连结BD,试判断BD与AD的位置关系,并说明理由; (3)连结BC交直线AD于点M,在直线AD上,是否存在这样的点N(不与点M重合),使得以A、B、N为顶点的三角形与△ABM相似?若存在,请求出点N的坐标;若不存在,请说明理由.
一枚质地均匀的正六面体骰子,六个面分别标有1、2、3、4、5、6,连续投掷两次. (1)用列表法或画树状图法表示出朝上的面上的数字所有可能出现的结果; (2)记两次朝上的面上的数字分别为m、n,若把m、n分别作为点P的横坐标和纵坐标,求点P(m,n)在双曲线y=上的概率.
如图,在Rt△ABC中,已知∠ABC=90°,BC=8,以AB为直径作⊙O,连结OC,过点C作⊙O的切线CD,D为切点,若sin∠OCD=,求直径AB的长.
如图,已知E、F分别为矩形ABCD的边BA、DC的延长线上的点,且AE=AB,CF=CD,连结EF分别交AD、BC于点G、H.请你找出图中与DG相等的线段,并加以证明.
先将·(1-)化简,然后请自选一个你喜欢的x值,再求原式的值.