已知抛物线经过A(﹣1,0),B(3,0)两点,与y轴相交于点C,该抛物线的顶点为点D.(1)求该抛物线的解析式及点D的坐标;(2)连接AC,CD,BD,BC,设△AOC,△BOC,△BCD的面积分别为,和,用等式表示,、之间的数量关系,并说明理由;(3)点M是线段AB上一动点(不包括点A和点B),过点M作MN∥BC交AC于点N,连接MC,是否存在点M使∠AMN=∠ACM?若存在,求出点M的坐标和此时刻直线MN的解析式;若不存在,请说明理由.
如图,在Rt△ABC中, ∠B=90°,AB=3cm,BC=4cm,点P从点A出发, 以1cm/s的速度沿AB运动;同时,点Q从点B出发,以2cm/s的速度沿BC运动,当点Q到达点C时,P、Q两点同时停止运动. (1)试写出△PBQ的面积S(cm2)与动点运动时间t(s)之间的函数表达式; (2)运动时间t为何值时,△PBQ的面积等于2cm2? (3)运动时间t为何值时,△PBQ 的面积S最大?最大值是多少?
已知,如图,扇形AOB的圆心角为120°,半径OA为6cm. (1)求扇形AOB的弧长和扇形面积; (2)若把扇形纸片AOB卷成一个圆锥无底纸盒,求这个纸盒的高OH.
某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下: 根据规定,笔试成绩和面试成绩分别按一定的百分比折算成综合成绩(综合成绩的满分仍为100分). (1)求出这6名选手笔试成绩的中位数、众数; (2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比; (3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.
已知:如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于 点E,∠BAC=45°. (1)∠EBC求的度数; (2)求证:BD=CD.
在一个不透明的布口袋中装有只有颜色不同,其他都相同的白、红、黑三种颜色的小球各 只,甲、乙两人进行 摸球游戏:甲先从袋中摸出一球,看清颜色后放回,再由乙从袋中摸出一球. (1)试用树状图(或列表法)表示摸球游戏所有可能的结果; (2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为甲胜,问谁在游戏中获胜的可能性更大些?