如图,在四边形ABCD中,DC∥AB,DA⊥AB,AD=4cm,DC=5cm,AB=8cm.如果点P由B点出发沿BC方向向点C匀速运动,同时点Q由A点出发沿AB方向向点B匀速运动,它们的速度均为1cm/s,当P点到达C点时,两点同时停止运动,连接PQ,设运动时间为t s,解答下列问题:(1)当t为何值时,P,Q两点同时停止运动?(2)设△PQB的面积为S,当t为何值时,S取得最大值,并求出最大值;(3)当△PQB为等腰三角形时,求t的值.
我市某中学为了了解孩子们对《中国诗词大会》,《挑战不可能》,《最强大脑》,《超级演说家》,《地理中国》五种电视节目的喜爱程度,随机在七、八、九年级抽取了部分学生进行调查(每人只能选择一种喜爱的电视节目),并将获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:
(1)本次调查中共抽取了 名学生.
(2)补全条形统计图.
(3)在扇形统计图中,喜爱《地理中国》节目的人数所在的扇形的圆心角是 度.
(4)若该学校有2000人,请你估计该学校喜欢《最强大脑》节目的学生人数是多少人?
如图, Rt Δ AOB 的直角边 OA 在 x 轴上, OA = 2 , AB = 1 ,将 Rt Δ AOB 绕点 O 逆时针旋转 90 ° 得到 Rt Δ COD ,抛物线 y = − 5 6 x 2 + bx + c 经过 B 、 D 两点.
(1)求二次函数的解析式;
(2)连接 BD ,点 P 是抛物线上一点,直线 OP 把 ΔBOD 的周长分成相等的两部分,求点 P 的坐标.
如图,在平面直角坐标系中, ΔABC 的三个顶点都在格点上,点 A 的坐标为 ( 2 , 2 ) 请解答下列问题:
(1)画出 ΔABC 关于 y 轴对称的△ A 1 B 1 C 1 ,并写出 A 1 的坐标.
(2)画出 ΔABC 绕点 B 逆时针旋转 90 ° 后得到的△ A 2 B 2 C 2 ,并写出 A 2 的坐标.
(3)画出△ A 2 B 2 C 2 关于原点 O 成中心对称的△ A 3 B 3 C 3 ,并写出 A 3 的坐标.
已知:如图,直线 y = 1 2 x + b 与 x 轴负半轴交于点 A ,与 y 轴正半轴交于点 B ,线段 OA 的长是方程 x 2 − 7 x − 8 = 0 的一个根,请解答下列问题:
(1)求点 B 坐标;
(2)双曲线 y = k x ( k ≠ 0 , x > 0 ) 与直线 AB 交于点 C ,且 AC = 5 5 ,求 k 的值;
(3)在(2)的条件下,点 E 在线段 AB 上, AE = 5 ,直线 l ⊥ y 轴,垂足为点 P ( 0 , 7 ) ,点 M 在直线 l 上,坐标平面内是否存在点 N ,使以 C 、 E 、 M 、 N 为顶点的四边形是矩形?若存在,请直接写出点 N 的坐标;若不存在,请说明理由.
“一带一路”的战略构想为国内许多企业的发展带来了新的机遇,某公司生产 A , B 两种机械设备,每台 B 种设备的成本是 A 种设备的1.5倍,公司若投入16万元生产 A 种设备,36万元生产 B 种设备,则可生产两种设备共10台.请解答下列问题:
(1) A 、 B 两种设备每台的成本分别是多少万元?
(2)若 A , B 两种设备每台的售价分别是6万元,10万元,公司决定生产两种设备共60台,计划销售后获利不低于126万元,且 A 种设备至少生产53台,求该公司有几种生产方案;
(3)在(2)的条件下,销售前公司决定从这批设备中拿出一部分,赠送给“一带一路”沿线的甲国,剩余设备全部售出,公司仍获利44万元,赠送的设备采用水路运输和航空运输两种方式,共运输4次,水路运输每次运4台 A 种设备,航空运输每次运2台 B 种设备(运输过程中产生的费用由甲国承担).直接写出水路运输的次数.