如图,在四边形ABCD中,DC∥AB,DA⊥AB,AD=4cm,DC=5cm,AB=8cm.如果点P由B点出发沿BC方向向点C匀速运动,同时点Q由A点出发沿AB方向向点B匀速运动,它们的速度均为1cm/s,当P点到达C点时,两点同时停止运动,连接PQ,设运动时间为t s,解答下列问题:(1)当t为何值时,P,Q两点同时停止运动?(2)设△PQB的面积为S,当t为何值时,S取得最大值,并求出最大值;(3)当△PQB为等腰三角形时,求t的值.
已知方程的一个根是3,求m的值及方程的另一个根.
解方程:(+4)2=5(+4).
(本小题满分10分)如图,在等腰梯形ABCD中,AD∥BC,AB=DC=50,AD=75,BC=135.点P从点B出发沿折线段BA—AD—DC以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点Q向上作射线QK⊥BC,交折线段CD—DA—AB于点E.点P,Q同时开始运动,当点P与点C重合时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).(1)当点P到达终点C时,求t的值,并指出此时BQ的长;(2)当点P运动到AD上时,t为何值能使PQ∥DC?(3)设射线QK扫过梯形ABCD的面积为S,分别求出点E运动到CD,DA上时,S与t的函数关系式;(不必写出t的取值范围)(4)△PQE能否成为直角三角形?若能,写出t的取值范围;若不能,请说明理由.
(本小题满分8分)已知:在平面直角坐标系xOy中,给出如下定义:线段AB及点P,任取AB上一点Q,线段PQ长度的最小值称为点P到线段AB的距离,记作d(P→AB).(1)如图l,已知C点的坐标为(1,0),D点的坐标为(3,0),求点P(2,1)到线段CD的距离d(P→CD)为____;(2)已知:线段EF:y=x(0≤x≤3),点G到线段时的距离d(P→EF)为,且点G的横坐标为l,在图2中画出图,试求点G的纵坐标.
(本小题满分10分)某市的重大惠民工程——公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=-x+5,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间菇的关系是y=-x+ (x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:
(1)求出z与x的函数关系式;(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值.(参考数据:≈17.7,≈17.8,≈17.9)