小明和小莉在跑道上进行100m短跑比赛,两人从出发点同时起跑,小明到达终点时,小莉离终点还差6m,已知小明和小莉的平均速度分别为x m/s、y m/s.(1)如果两人重新开始比赛,小明从起点向后退6m,两人同时起跑能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.(2)如果两人想同时到达终点,应如何安排两人起跑位置?请设计两种方案.
解不等式组:.
计算:;
如图,已知平面直角坐标系中,点,为两动点,其中,连结,. (1)求证:; (2)当时,抛物线经过两点且以轴为对称轴,求抛物线对应的二次函数的关系式; (3)在(2)的条件下,设直线交轴于点,过点作直线交抛物线于两点,问是否存在直线,使?若存在,求出直线对应的函数关系式;若不存在,请说明理由.
已知等腰中,,平分交于点,在线段上任取一点(点除外),过点作,分别交于点,作,交于点,连结. (1)求证:四边形为菱形; (2)当点在何处时,菱形的面积为四边形面积的一半?
如图1,线段过圆心,交圆于两点,切圆于点,作,垂足为,连结. (1)写出图1中所有相等的角(直角除外),并给出证明; (2)若图1中的切线变为图2中割线的情形,与圆交于两点,与交于点,,写出图2中相等的角(写出三组即可,直角除外); (3)在图2中,证明:.