已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.(1)如图1,求证:△AFB≌△ADC;(2)请判断图1中四边形BCEF的形状,并说明理由;(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.
八年级一班有学生52人,八年级二班有学生48人,期末数学测试中一班学生的平均分为81.2分,二班学生的平均分为84.5分,求:这两个班100名学生的平均分是多少?
已知一次函数y=(2m-3)x+2-n满足下列条件,分别求出字母m,n的取值范围. (1)y随x的增大而减小; (2)函数图象与y轴的交点在x轴上方; (3)函数图象经过第一、三、四象限.
求函数y=3x-2和y=2x+3的图象与y轴所围成的图形的面积.
某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开办海产品运输业务,已知运输路程为120千米,汽车和火车的速度分别为60千米/时,100千米/时,两货运公司的收费项目及收费标准如下表所示:
(注:“元/(吨·千米)”表示每吨货物每千米的运费,“元/(吨·小时)”表示每吨货物每小时的冷藏费) (1)设该批发商待运的海产品有x吨,汽车货运公司和铁路货运公司单独运输所要收取的费用分别为y1元和y2元,求y1和y2关于x的函数解析式; (2)若该批发商待运的海产品不少于30吨,为节省运费,他应该选择哪个货运公司承担运输业务?
一报亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以按每份0.2元的价格退回报社,在一个月内(按30天计算)有20天每天可以卖出100份,其余10天每天只能卖出60份,但每天报亭从报社订购的报纸份数必须相同,若报亭每天从报社订购的该种晚报份数为自变量x,每月所获利润为y元. (1)写出y与x之间的函数解析式,并指出自变量x的取值范围; (2)报亭应该每天从报社订购多少份该种晚报,才能使每月获得的利润最大?最大利润是多少?