高淳区去年螃蟹放养面积为20万亩,每亩产量为40kg,为满足市场需要,今年该区扩大了放养面积,并且全部放养了高产的新品种螃蟹.已知今年螃蟹的总产量为1500万kg,且螃蟹放养面积的增长率是亩产量的增长率的2倍,求该区今年螃蟹的亩产量.
计算或化简:(1);(2)
在平面直角坐标系中,O为坐标原点,点A的坐标为(-8,0),直线BC经过点B(-8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转α度(0<α≤180°)得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于P、Q.(1)四边形OABC的形状是 , ;(2)①如图1,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求PQ的长;②如图2,当四边形OA′B′C′的顶点B′落在直线BC上时,求PQ的长.(3)小明在旋转中发现,当点P位于点B的右侧时,总存在线段PQ与线段 相等;同时存在着特殊情况,求出此时P点的坐标。
如图,直线y=kx+b与双曲线y=交于点A(-1,-5)、D(5,1),并分别与x轴、y轴交于点C、B.(1)求出k、b、m的值;(2)根据图像直接写出不等式kx+b<的解集为 ;(3)若点E在x轴的正半轴上,是否存在以点E、C、B构成的三角形与△OAB相似?若存在,请求出E的坐标;若不存在,请说明理由.
有些分式可以拆分成几个分式的和、差,观察后回答问题。(1) ;(2) ;(3).
如图,一转盘被等分成三个扇形,上面分别标有-1,1,2中的一个数,指针固定,转动转盘后任其自由停止,这时某个扇形会恰好停在指针所指的位置,并相应得到这个扇形上的数( 若指针恰好指在等分线上,当做指向右边的扇形).若转动一次转盘,将所得的数作为k,则使反比例函数 的图象在第一、三象限的概率是多少?若小静和小宇进行游戏,每人各转动两次转盘,若两次所得数的积为正数,则小静赢,若两次所得数的积为负数,则小宇赢.这是个公平的游戏吗?请说明理由.(借助画树状图或列表的方法)