(本小题满分12分)某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:(1)补全频率分布直方图并求n、a、p的值;(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.
已知圆C经过两点P(-1,-3),Q(2,6),且圆心在直线上,直线l的方程为. (1)求圆C的方程; (2)证明:直线l与圆C恒相交; (3)求直线l被圆C截得的最短弦长.
一质点运动的方程为s=8-3t2. (1)求质点在[1,1+△t]这段时间内的平均速度; (2)用定义法求质点在t=1时的瞬时速度.
已知单调递增的等比数列满足:,且是,的等差中项. (1)求数列的通项公式; (2)若,,求.
已知函数的图象经过点,曲线在点处的切线恰好与直线垂直. (1)求实数的值; (2)若函数在区间上单调递增,求的取值范围.
如图,在四棱锥中,平面,底面是菱形,,,为与的交点,为棱上一点. (Ⅰ)证明:平面⊥平面; (Ⅱ)若平面,求三棱锥的体积.