如图,在直角坐标系中点A(2,0),点P在射线(x<0)上运动,设点P的横坐标为a,以AP为直径作⊙C,连接OP、PB,过点P作PQ⊥OP交⊙C于点Q.(1)证明:∠AOP=∠BPQ;(2)当点P在运动的过程中,线段PQ的长度是否发生变化,若变化,请用含a的代数式表示PQ的长;若不变,求出PQ的长;(3)当tan∠APO=时,①求点Q坐标;②点D是圆上任意一点,求QD+OD的最小值.
如图所示,△AOB≌△COD,∠AOB=∠COD,∠A=∠C,则∠D的对应角是__________,图中相等的线段有__________.
如图,,AB的垂直平分线DE交BC延长线于E,交AC于F,∠A=50°,,则(1)△BCF的周长为多少?(2)∠E的度数为多少?
如图,点E是Rt△ABC的斜边AB的中点,ED⊥AB,且∠CAD:∠BAD=5:2,则∠BAC的度数是多少?
阅读下面的文字,解答问题. 大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用-1来表示的小数部分,你同意小明的表示方法吗? 事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分. 请解答:已知:10+=x+y,其中x是整数,且0<y<1,求x-y的相反数.
已知坐标平面内一点A(-2,3),将点A先向右平移个单位,再向下平移个单位,得到A′,则A′的坐标为________.