如图,在直角坐标系中点A(2,0),点P在射线(x<0)上运动,设点P的横坐标为a,以AP为直径作⊙C,连接OP、PB,过点P作PQ⊥OP交⊙C于点Q.(1)证明:∠AOP=∠BPQ;(2)当点P在运动的过程中,线段PQ的长度是否发生变化,若变化,请用含a的代数式表示PQ的长;若不变,求出PQ的长;(3)当tan∠APO=时,①求点Q坐标;②点D是圆上任意一点,求QD+OD的最小值.
(本小题满分8分)某零件制造车间有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件,可获利润150元,每制造一个乙种零件可获利润260元,在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件,且生产乙种零件的个数不超过甲种零件个数的一半. ⑴请写出此车间每天所获利润y(元)与x(人)之间的函数关系式; ⑵求自变量x的取值范围; ⑶怎样安排生产每天获得的利润最大,最大利润是多少?
(本小题满分8分)星期天,小明与小刚骑自行车去距家 50千米的某地旅游,匀速行驶1.5小时的时候,其中一 辆自行车出故障,因此二人在自行车修理点修车,用了 半个小时,然后以原速继续前行,行驶1小时到达目的 地.请在右面的平面直角坐标系中,画出符合他们行驶 的路程S(千米)与行驶时间t(时)之间的函数图象.
已知,如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE。求证:⑴△ABC≌△DEF; ⑵GF=GC。
(2a+b)(2a-b)+b(2a+b)-4a2b÷b,其中a=-,b=2
(本小题满分7分)分解因式:6xy2―9x2y―y3