如图1是立方体和长方体模型,立方体棱长和长方体底面各边长都为1,长方体侧棱长为2,现用60张长为6宽为4的长方形卡纸,剪出这两种模型的表面展开图,有两种方法: 方法一:如图2,每张卡纸剪出3个立方体表面展开图; 方法二:如图3,每张卡纸剪出2个长方体表面展开图(图中只画出1个).
(图1) (图2) (图3)
如图,某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且CB=5米. (1)求钢缆CD的长度;(精确到0.1米) (2)若AD=2米,灯的顶端E距离A处1.6米,且∠EAB=120°,则灯的顶端E距离地面多少米? (参考数据:tan400=0.84,sin400=0.64,cos400=)
有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字,和-4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y). (1)用列表或画树状图的方法写出点Q的所有可能坐标; (2)求点Q落在直线y=上的概率.
20.解方程: (1)解方程:x2-6x-2=0; (2).
某中学九年级学生步行到郊外春游.一班的学生组成前队,速度为4 km/h,二班的学生组成后队,速度为6 km/h.前队出发1 h后,后队才出发,同时,后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12 km/h.若不计队伍的长度,如图,折线A-B-C、A-D-E分别表示后队、联络员在行进过程中,离前队的路程y(km)与后队行进时间x(h)之间的部分函数图象. (1)求线段AB对应的函数关系式; (2)求点E的坐标,并说明它的实际意义; (3)联络员从出发到他折返后第一次与后队相遇的过程中,当x为何值时,他离前队的路程与他离后队的路程相等?
一棉花种植区的农民研制出采摘棉花的单人便携式采棉机,采摘效率高,能耗低,绿色环保.经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元.雇人采摘棉花,按每采摘1公斤棉花元的标准支付雇工工资,雇工每天工作8小时. (1)一个雇工手工采摘棉花,一天能采摘多少公斤? (2)一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a的值; (3)在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇用的人数是张家的2倍.张家雇人手工采摘,王家所雇的人中有的人自带采棉机采摘,的人手工采摘.两家采摘完毕,采摘的天数刚好一样,张家付给雇工工钱总额为14400元.王家这次采摘棉花的总重量是多少?