(本小题12分)圆C的半径为3,圆心在直线上且在x轴下方,x轴被圆C截得的弦长为.(1)求圆C的方程;(2)是否存在斜率为1的直线l,使得以l被圆截得的弦为直径的圆过原点?若存在,求出直线l的方程;若不存在,说明理由.
(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,两种坐标系取相同的单位长度. 已知曲线,过点的直线的参数方程为(t为参数)。直线与曲线分别交于.若成等比数列,求实数的值。
(本小题满分10分)选修4-1:几何证明选讲如图,已知是⊙的直径,是⊙的弦,的平分线交⊙于,过点作交的延长线于点,交于点.若,求的值。
(本小题满分12分)已知函数(a是实数),+1。(1)若函数f(x)在[1,+)上是单调函数,求a的取值范围;(2)是否存在正实数a满足:对于任意,总存在,使得f(x1)=g(x2)成立,若存在求出a的范围,若不存在,说明理由。(3)若数列满足,求证:。
(本小题满分12分)设抛物线C1:y2=4x的准线与x轴交于点F1,焦点为F2;以F1,F2为焦点,离心率为的椭圆记作C2(1)求椭圆的标准方程;(2)直线L经过椭圆C2的右焦点F2,与抛物线C1交于A1,A2两点,与椭圆C2交于B1,B2两点。当以B1B2为直径的圆经过F1时,求|A1A2|长。(3)若M是椭圆上的动点,以M为圆心,MF2为半径作圆,是否存在定圆,使得与恒相切?若存在,求出的方程,若不存在,请说明理由。
(本小题满分12分)如图,在四棱台ABCD-A1B1C1D1中,DD1平面ABCD,底面ABCD是平行四边形,AB=AD=2A1B1,(1)证明:BB1AC;(2)若AB=2,且二面角A1-AB-C大小为60,连接AC,BD,设交点为O,连接B1O。求三棱锥B1-ABO外接球的体积。(球体体积公式:,R是球半径)