(本小题12分)已知数列的前n项和为,,.(1)求数列的通项公式;(2)求数列的前n项和 .
若函数的图象与直线(m>0)相切,并且切点的横坐标依次成公差为的等差数列. (Ⅰ)求的值; (Ⅱ)若点是图象的对称中心,且,求点的坐标.
如图,直线与椭圆交于两点,记的面积为,是坐标原点. (1)当时,求的最大值; (2)当时,求直线的方程.
已知椭圆的长轴长为4,且点在椭圆上. (1)求椭圆的方程; (2)过椭圆右焦点斜率为的直线交椭圆于两点,若,求直线的方程
已知直线及圆. (1)求垂直于直线且与圆相切的直线的方程; (2)过直线上的动点作圆的一条切线,设切点为,求的最小值.
如图,已知抛物线:,其上一点到其焦点的距离为,过焦点的直线与抛物线交于左、右两点. (1)求抛物线的标准方程; (2)若,求直线的方程.