等差数列{am}的前m项和为Sm,已知S3=,且S1,S2,S4成等比数列,(1)求数列{am}的通项公式.(2)若{am}又是等比数列,令bm= ,求数列{bm}的前m项和Tm.
已知直线(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)将曲线C的极坐标方程化为直角坐标方程;(2)设点的直角坐标为,直线与曲线C 的交点为,,求的值.
如图,在圆中,相交于点的两弦,的中点分别是,,直线与直线相交于点,证明:(1);(2).
若定义在上的函数满足,,.(Ⅰ)求函数解析式;(Ⅱ)求函数单调区间;(Ⅲ)若、、满足,则称比更接近.当且时,试比较和哪个更接近,并说明理由.
已知椭圆的下顶点为,到焦点的距离为.(Ⅰ)设Q是椭圆上的动点,求的最大值;(Ⅱ)若直线与圆O:相切,并与椭圆交于不同的两点A、B.当,且满足时,求AOB面积S的取值范围.
某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:
(Ⅰ)从统计数据看,甲乙两个班哪个班成绩更稳定(用数据说明)?(Ⅱ) 若把上表数据作为学生投篮命中率,规定两个班级的1号和2号两名同学分别代表自己的班级参加比赛,每人投篮一次,将甲、乙两个班两名同学投中的次数之和分别记作和,试求和的分布列和数学期望.