在平面直角坐标系中,已知两点及,动点Q到点A的距离为10,线段BQ的垂直平分线交AQ于点P.(Ⅰ)求的值; (Ⅱ)求点的轨迹方程
已知函数f(x)= |x-1|,g(x)=" -" |x+3| + a (aÎR) (1)解关于的不等式; (2)若函数的图像恒在函数的图像的上方,求实数的取值范围.
.已知直线的参数方程是(t是参数)圆C的极坐标方程为.(1)求圆C在直角坐标系下的方程;(2)由直线上的点向圆引切线,求切线长的最小值.
A 为圆外一点,AB,AC分别交圆于D, E, AB, AC的长分别是一元二次方程x2-x+(m2 –m + )=0的两个根.( 如图所示)(1)求m的值(2)求证:DE//BC
已知函数f(x)= xlnx. (1) 求函数f(x)的单调区间和最小值; (2)当b>0时,求证: (其中e为自然对数的底数); (3)若a>0,b>0, 求证:f(a)+(a+b)ln2 ³ f(a+b)- f(b).
如图所示,椭圆C:的一个焦点为F(1,0),且过点(2,0)(1)求椭圆C的方程; (2)已知A、B为椭圆上的点,且直线AB垂直于轴,又直线:=4与轴交于点N,直线AF与BN交于点M.(ⅰ)求证:点M恒在椭圆C上;(ⅱ)求△AMN面积的最大值.