定义运算max{a,b}:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b.如max{﹣3,2}=2.(1)max{,3}= ;(2)已知和在同一坐标系中的图象如图所示,若max{,}=,结合图象,直接写出x的取值范围;(3)用分类讨论的方法,求max{2x+1,x﹣2}的值.
如图,,是的切线,,为切点,点在上,,于
(1)求证:;
(2)若,的半径为4,求四边形的周长(精确到0.1,
如图,中,,,,是上一点,,,垂足为,求线段的长.
国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,一年过去了,为了了解足球知识的普及情况,某校举行“足球在身边”的专题调查活动,采取随机抽样的方法进行问卷调查,调查结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,并将调查结果绘制成两幅不完整的统计图(如图),请根据图中提供的信息,解答下列问题:
(1)被调查的学生共有 人.
(2)在扇形统计图中,表示“比较了解”的扇形的圆心角度数为 度;
(3)从该校随机抽取一名学生,抽中的学生对足球知识是“基本了解”的概率的是多少?
解分式方程: 3 x = 4 1 + x .
已知抛物线 y = - 1 2 x 2 + bx + c 与轴交于点,与轴的两个交点分别为,.
(1)求抛物线的解析式;
(2)已知点在抛物线上,连接,,若是以为直角边的直角三角形,求点的坐标;
(3)已知点在轴上,点在抛物线上,是否存在以,,,为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.