定义运算max{a,b}:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b.如max{﹣3,2}=2.(1)max{,3}= ;(2)已知和在同一坐标系中的图象如图所示,若max{,}=,结合图象,直接写出x的取值范围;(3)用分类讨论的方法,求max{2x+1,x﹣2}的值.
质量检测部门对甲、乙、丙三家公司销售产品的使用寿命进行了跟踪调查,统计结果如下(单位:年):甲公司: 4,5,5,5,5,7,9,12,13,15;乙公司: 6,6,8,8,8,9,10,12,14,15;丙公司: 4,4,4,6,7,9,13,15,16,16.请回答下列问题:(1)甲、乙、丙三家公司在该产品的销售中都声称,其销售的该产品的使用寿命是8年,你如何理解他们的宣传.(请用已学的统计量中加以说明)(2)如果你是顾客,你将选购哪家公司销售的产品,为什么?(3)如果你是丙公司的推销员,你将如何结合上述数据,对本公司的产品进行推销?
我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.运用上述知识,解决下列问题:(1)如果,其中a、b为有理数,那么= ,= ;(2)如果,其中a、b为有理数,求的值.
(1)(2)
(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D;(2)阅读下面的内容,并解决后面的问题:如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数;解:∵AP、CP分别平分∠BAD、∠BCD ∴∠1=∠2,∠3=∠4,由(1)的结论得:,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D.∴∠P=(∠B+∠D)=26°.① 如图3, 直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,求∠P的度数;② 在图4中,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论,无需说明理由.③ 在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论,无需说明理由.(本题8分)
随着大陆惠及台胞政策措施的落实,台湾水果进入了大陆市场.一水果经销商购进了A、B两种台湾水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:有两种配货方式(整箱配货)方案一:甲乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱;方案二:按照甲乙两店盈利相同配货,其中A种水果甲店 箱,乙店 箱,B种水果甲店 箱,乙店 箱(1)如果按照方案一配货,请你计算出经销商能盈利多少元;(2)请你将方案二填写完整(只写一种情况即可),并根据你填写的方案二与方案一作比较,哪种方案盈利较多.(本题6分)