(本小题满分12分)已知数列满足.(Ⅰ)设,证明:数列为等差数列,并求数列的通项公式;(Ⅱ)求数列的前项和.
已知x=-1是的一个极值点(1)求的值;(2)求函数的单调增区间;(3)设,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由。
已知函数和点,过点作曲线的两条切线、,切点分别为、.(Ⅰ)设,试求函数的表达式;(Ⅱ)是否存在,使得、与三点共线.若存在,求出的值;若不存在,请说明理由.(Ⅲ)在(Ⅰ)的条件下,若对任意的正整数,在区间内总存在个实数,,使得不等式成立,求的最大值.
若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,(其中为自然对数的底数).(1)求的极值;(2) 函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
已知直线相交于A、B两点,M是线段AB上的一点,,且点M在直线上.(Ⅰ)求椭圆的离心率;(Ⅱ)若椭圆的焦点关于直线的对称点在单位圆上,求椭圆的方程.
设曲线C:的离心率为,右准线与两渐近线交于P,Q两点,其右焦点为F,且△PQF为等边三角形。(1)求双曲线C的离心率;(2)若双曲线C被直线截得弦长为,求双曲线方程;(3)设双曲线C经过,以F为左焦点,为左准线的椭圆的短轴端点为B,求BF 中点的轨迹N方程。