(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,圆C的参数方程为参数).以为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求曲线的极坐标方程;(Ⅱ)设直线极坐标方程是射线与圆C的交点为、,与直线的交点为,求线段的长.
已知函数,. (1)求的值; (2)求函数的极大值.
已知抛物线的顶点在原点,对称轴为轴,焦点在双曲线上,求抛物线方程.
椭圆的中心在原点,焦点在坐标轴上,经过 (Ⅰ)求椭圆C的标准方程; (Ⅱ)斜率不为的直线与椭圆交于、两点,定点,若,求直线的斜率的取值范围.
设椭圆C:的离心率与双曲线x2-y2=1的离心率互为倒数,且在椭圆上. (Ⅰ) 求椭圆C的方程; (Ⅱ) 若椭圆C左、右焦点分别为,过的直线与椭圆C相交于两点,求面积的最大值.
如图,四棱锥P—ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB,点E是PB的中点,点F是EB的中点. (Ⅰ) 求证:平面; (Ⅱ) 求证:平面.