已知点,分所成的比为2,是平面上一动点,且满足.(1)求点的轨迹对应的方程;(2) 已知点在曲线上,过点作曲线的两条弦,且直线的斜率满足,试推断:动直线有何变化规律,证明你的结论.
已知函数. (1)求的定义域; (2)若角在第一象限且,求的值.
如图,动点M与两定点A(-1,0),B(2,0)构成△MAB,且∠MBA=2∠MAB.设动点M的轨迹为C. (1)求轨迹C的方程; (2)设直线(其中)与y轴相交于点P,与轨迹C相交于点Q,R,且,求的取值范围.
已知函数. (1)设,,求的单调区间; (2)若对任意,,试比较与的大小.
如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证: (1)平面ADE⊥平面BCC1B1; (2)直线A1F∥平面ADE.
已知数列的前项和为,,,,其中为常数. (1)证明:; (2)当为何值时,数列为等差数列?并说明理由.