在直角坐标平面中,△的两个顶点的坐标分别为,,平面内两点同时满足下列条件:①=0;②;③∥(1)求△的顶点的轨迹方程;(2)过点直线与(1)中轨迹交于不同的两点,求△面积的最大值.
在等比数列的前n项和中,最小,且,前n项和,求n和公比q
已知函数,求不等式的解集。
数列中,已知,时,.数列满足:. (1)证明:为等差数列,并求的通项公式; (2)记数列的前项和为,若不等式成立(为正整数).求出所有符合条件的有序实数对.
设椭圆: 的离心率为,点(,0),(0,)原点到直线的距离为。 (1) 求椭圆的方程; (2) 设点为(,0),点在椭圆上(与、均不重合),点在直线上,若直线的方程为,且,试求直线的方程.
设函数().区间 ,定义区间的长度为 b-a . (1)求区间I的长度(用 a 表示); (2)若,求的最大值.