如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?
如图,在平面直角坐标系中,抛物线与轴交于点,与轴交于两点,点的坐标为,直线恰好经过B、C两点.(1)写出点C的坐标;(2)求出抛物线的解析式,并写出抛物线的对称轴和点的坐标;(3)点在抛物线的对称轴上,抛物线顶点为D且,求点的坐标.
在△中,AD⊥BC,(1)利用尺规作图,作△外接圆⊙O;(2)判断:AC和⊙O的位置关系,并说明理由;(3)若AC=10,AD=8,求⊙O的直径;
如图所示,我班同学组织课外实践活动,预测量一建筑物的高度,在建筑物附近一斜坡A点测得建筑物顶端D的仰角为30°,在坡底C点测得建筑物顶端D的仰角为60°,已知A点的高度AB为20米,AC的坡度为1∶1 (即AB∶BC=1∶1),且B、C、E三点在同一条直线上,请根据以上条件求出建筑物DE的高度(测量器的高度忽略不计).
已知:如图,四边形ABCD中,AC平分∠BAD,∠B和∠D都是直角.⑴ 求证:BC=CD.⑵ 若将原题中的已知条件“∠B和∠D都是直角”放宽为“∠B和∠D互为补角”,其余条件不变,猜想:BC边和邻边CD的长度是否一定相等?请证明你的结论.⑶ 探究:在⑵的情况下,如果再限制∠BAD=60°,那么相邻两边AB、AD和对角线AC之间有什么确定的数量关系?需说明理由.
某村为解决所有农户的灌溉问题,计划建造A、B两种机井共20个.据调查:建造A、B两种机井各1个,共需费用5万元;建造A种机井3个,B种机井4个,共需费用18万元.(1)求建造A、B两种机井造价分别是多少?(2)设建造A种机井个,总费用为万元,求与之间的函数关系式;若要使投入总费用不超过52万元,至少要建造A种机井多少个?