某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?
已知如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,若∠A+∠D=80°,则∠B+∠C= ;仔细观察,在图2中“8字形”的个数: 个;(2)在图2中,若∠DAO=50°,∠OCB=40°,∠P=35°,试求∠D的度数;(3)在图2中,若设∠D=x°,∠B=y°,其它条件不变,试求∠P的度数.
某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元。(1)若该起市同时一次购进甲、两种商品共80件,恰好用去1600元,求能购进甲乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元,请你帮助该超市设计相应的进货方案。
如图,△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,垂足分别为D、E,∠AFD=158°.求:(1)∠C的度数;(2)∠EDF的度数。
一次知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对道题.(1)根据所给条件,完成下表: (2)若小明同学的竞赛成绩超过100分,则他至少答对几道题?
已知:关于、的方程组的解是正数,且<,求的范围。