某商场的销售部经过市场调查发现,该商场的某种商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为元/千克时,每日可售出该商品千克.(Ⅰ)求的值;(Ⅱ)若该商品的成本为元/千克,试确定销售价格的值,使该商场每日销售该商品所获得的利润最大.
设函数.(1)求f(x)的单调区间和极值;(2)关于的方程f(x)=a在区间上有三个根,求a的取值范围.
已知抛物线.命题p: 直线l1:与抛物线C有公共点.命题q: 直线l2:被抛物线C所截得的线段长大于2.若为假, 为真,求k的取值范围.
已知圆C过原点且与相切,且圆心C在直线上.(1)求圆的方程;(2)过点的直线l与圆C相交于A,B两点, 且, 求直线l的方程.
已知函数。(1)若的单调减区间是,求实数a的值;(2)若函数在区间上都为单调函数且它们的单调性相同,求实数a的取值范围;(3)a、b是函数的两个极值点,a<b,。求证:对任意的,不等式成立.
如图,已知直线l与抛物线相切于点P(2,1),且与轴交于点A,定点B的坐标为(2,0) .(1)若动点M满足,求点M的轨迹C;(2)若过点B的直线l(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.