如图所示,和两点分别在射线(点,分别在第一,四象限)上移动,且为坐标原点,动点满足.(Ⅰ)求的值;(Ⅱ)求动点的轨迹方程,并说明它表示什么曲线.
(本小题满分14分) 已知数列的前n项和Sn=9-6n. (1)求数列的通项公式. (2)设,求数列的前n项和.
(本小题满分12分) 过点P(1,4)作直线L,直线L与x,y的正半轴分别交于A,B两点,O为原点, ①△ABO的面积为S,求S的最小值并求此时直线l的方程; ②当|OA|+|OB|最小时,求此时直线L的方程
( 12分)在△ABC中,sinA+cosA=,AC=2,AB=3, 求① tanA的值 ; ② △ABC的面积.
(本题12分)某人承揽一项业务,需做文字标牌4个,绘画标牌5个,现有两种规格的原料,甲种规格每张3m2,可做文字标牌1个,绘画标牌2个,乙种规格每张2m2,可做文字标牌2个,绘画标牌1个,求两种规格的原料各用多少张,才能使总的用料面积最小?
(本题12分)在△ABC中,,cosC是方程的一个根,求①角C的度数②△ABC周长的最小值。